Tag Archives: standards

New European Standard for Social Impact Measurement

geces_report_coffee_2_evalblog

 

Evaluation has truly become a global movement. The number of evaluators and evaluation associations around the world is growing, and they are becoming more interconnected. What affects evaluation in one part of the world increasingly affects how it is practiced in another.

That is why the European standard for social impact measurement, announced just a few weeks ago, is important for evaluators in the US.

According to the published report and its accompanying press release, the immediate purpose of the standard is to help social enterprises access EU financial support, especially in relation to the European Social Entrepreneurship Funds (EuSEFs) and the Programme for Employment and Social Innovation (EaSI).

But as László Andor, EU Commissioner for Employment, Social Affairs and Inclusion, pointed out, there is a larger purpose:

The new standard…sets the groundwork for social impact measurement in Europe. It also contributes to the work of the Taskforce on Social Impact Investment set up by the G7 to develop a set of general guidelines for impact measurement to be used by social impact investors globally.

That is big, and it has the potential to affect evaluation around the world.

What is impact measurement?

For evaluators in the US, the term impact measurement may be unfamiliar. It has greater currency in Europe and, of late, in Canada. Defining the term precisely is difficult because, as an area of practice, impact measurement is evolving quickly.

Around the world, there is a growing demand for evaluations that incorporate information about impact, values, and value. It is coming from government agencies, philanthropic foundations, and private investors who want to increase their social impact by allocating their public or private funds more efficiently.

Sometimes these funders are called impact investors. In some contexts, the label signals a commitment to grant making that incorporates the tools and techniques of financial investors. In others, it signals a commitment by private investors to a double bottom line—a social return on their investment for others and a financial return for themselves.

These funders want to know if people are better off in ways that they and other stakeholders believe are important. Moreover, they want to know whether those impacts are large enough and important enough to warrant the funds being spent to produce them. In other words, did the program add value?

Impact measurement may engage a wide range of stakeholders to define the outcomes of interest, but the overarching definition of success—that the program adds value—is typically driven by funders. Value may be assessed with quantitative, qualitative, or mixed methods, but almost all of the impact measurement work that I have seen has framed value in quantitative terms.

Is impact measurement the same as evaluation?

I consider impact measurement a specialized practice within evaluation. Others do not. Geographic and disciplinary boundaries have tended to isolate those who identify themselves as evaluators from those who conduct impact measurement—often referred to as impact analysts. These two groups are beginning to connect, like evaluators of every kind around the world.

I like to think of impact analysts and evaluators as twins who were separated at birth and then, as adults, accidentally bump into each other at the local coffee shop. They are delighted and confused, but mostly delighted. They have a great deal to talk about.

How is impact measurement different from impact evaluation?

There is more than one approach to impact evaluation. There is what we might call traditional impact evaluation—randomized control trials and quasi-experiments as described by Shadish, Cook, and Campbell. There are also many recently developed alternatives—contribution analysis, evaluation of collective impact, and others.

Impact measurement differs from traditional and alternative impact evaluation in a number of ways, among them:

  1. how impacts are estimated and
  2. a strong emphasis on valuation.

I discuss both in more detail below. Briefly, impacts are frequently estimated by adjusting outcomes for a pre-established set of potential biases, usually without reference to a comparison or control group. Valuation estimates the importance of impacts to stakeholders—the domain of human values—and expresses it in monetary units.

These two features are woven into the European standard and have the potential to become standard practices elsewhere, including the US. If they were to be incorporated into US practice, it would represent a substantial change in how we conduct evaluations.

What is the new European standard?

The standard creates a common process for conducting impact measurement, not a common set of impacts or indicators. The five-step process presented in the report is surprisingly similar to Tyler’s seven-step evaluation procedure, which he developed in the 1930s as he directed the evaluation of the Eight-Year Study across 30 schools. For its time, Tyler’s work was novel and the scale impressive.

tyler_geces_table_evalblog

Tyler’s evaluation procedure developed in the 1930s and the new European standard process: déjà vu all over again?

Tyler’s first two steps were formulating and classifying objectives (what do programs hope to achieve and which objectives can be shared across sites to facilitate comparability and learning). Deeply rooted in the philosophy of progressive education, he and his team identified the most important stakeholders—students, parents, educators, and the larger community—and conducted much of their work collaboratively (most often with teachers and school staff).

Similarly, the first two steps of the European standard process are identifying objectives and stakeholders (what does the program hope to achieve, who benefits, and who pays). They are to be implemented collaboratively with stakeholders (funders and program staff chief among them) with an explicit commitment to serving the interests of society more broadly.

Tyler’s third and fourth steps were defining outcomes in terms of behavior and identifying how and where the behaviors could be observed. The word behavior was trendy in Tyler’s day. What he meant was developing a way to observe or quantify outcomes. This is precisely setting relevant measures, the third step of the new European standard process.

Tyler’s fifth and sixth steps were selecting, trying, proving, and improving measures as they function in the evaluation. Today we would call this piloting, validation, and implementation. The corresponding step in the standard is measure, validate and value, only the last of these falling outside the scope of Tyler’s procedure.

Tyler concluded his procedure with interpreting results, which for him included analysis, reporting, and working with stakeholders to facilitate the effective use of results. The new European standard process concludes in much the same way, with reporting results, learning from them, and using them to improve the program.

How are impacts estimated?

Traditional impact evaluation defines an impact as the difference in potential outcomes—the outcomes participants realized with the program compared to the outcomes they would have realized without the program.

It is impossible to observe both of these mutually exclusive conditions at the same time. Thus, all research designs can be thought of as hacks, some more elegant than others, that allow us to approximate one condition while observing the other.

The European standard takes a similar view of impacts and describes a good research design as one that takes the following into account:

  • attribution,the extent to which the program, as opposed to other programs or factors, caused the outcomes;
  • deadweight, outcomes that, in the absence of the program, would have been realized anyway;
  • drop-off, the tendency of impacts to diminish over time; and
  • displacement, the extent to which outcomes realized by program participants prevent others from realizing those outcomes (for example, when participants of a job training program find employment, it reduces the number of open jobs and as a result may make it more difficult for non-participants to find employment).

For any given evaluation, many research designs may meet the above criteria, some with the potential to provide more credible findings than others.

However, impact analysts may not be free to choose the research design with the potential to provide the most credible results. According to the standard, the cost and complexity of the design must be proportionate to the size, scope, cost, potential risks, and potential benefits of the program being evaluated. In other words, impact analysts must make a difficult tradeoff between credibility and feasibility.

How well are analysts making the tradeoff between credibility and feasibility?

At the recent Canadian Evaluation Society Conference, my colleagues Cristina Tangonan, Anna Fagergren (not pictured), and I addressed this question. We described the potential weaknesses of research designs used in impact measurement generally and Social Return on Investment (SROI) analyses specifically. Our work is based on a review of publicly available SROI reports (to date, 107 of 156 identified reports) and theoretical work on the statistical properties of the estimates produced.

ces_2014_tangonan_gargani_evalblogAt the CES 2014 conference.

What we have found so far leads us to question whether the credibility-feasibility tradeoffs are being made in ways that adequately support the purposes of SROI analyses and other forms of impact measurement.

One design that we discussed starts with measuring the outcome realized by program participants. For example, how many participants of a job training program found employment, or the test scores realized by students who were enrolled in a new education program. Sometimes impact analysts will measure the outcome as a pre-program/post-program difference, often they measure the post-program outcome level on its own.

Once the outcome measure is in hand, impact analysts adjust it for attribution, deadweight, drop-off, and displacement by subtracting some amount or percentage for each potential bias. The adjustments may be based on interviews with past participants, prior academic or policy research, or sensitivity analysis. Rarely are they based on comparison or control groups constructed for the evaluation. The resulting adjusted outcome measure is taken as the impact estimate.

This is an example of a high-feasibility, low-credibility design. Is it good enough for the purposes that impact analysts have in mind? Perhaps, but I’m skeptical. There is a century of systematic research on estimating impacts—why didn’t this method, which is much more feasible than many alternatives, become a standard part of evaluation practice decades before? I believe it is because the credibility of the design (or more accurately, the results it can produce) is considered too low for most purposes.

From what I understand, this design–and others that are similar–would meet the European standard. That leads me to question whether the new standard has set the bar too low, unduly favoring feasibility over credibility.

What is valuation?

In the US, I believe we do far less valuation than is currently being done in Europe and Canada. Valuation expresses the value (importance) of impacts in monetary units (a measure of importance).

If the outcome, for example, were earned income, then valuation would entail estimating an impact as we usually would. If the outcome were health, happiness, or well-being, valuation would be more complicated. In this case, we would need to translate non-monetary units to monetary units in a way that accurately reflects the relative value of impacts to stakeholders. No easy feat.

In some cases, valuation may help us gauge whether the monetized value of a program’s impact is large enough to matter. It is difficult to defend spending $2,000 per participant of a job training program that, on average, results in additional earned income of $1,000 per participant. Participants would be better off if we gave $2,000 to each.

At other times, valuation may not be useful. For example, if one health program saves more lives than another, I don’t believe we need to value lives in dollars to judge their relative effectiveness.

Another concern is that valuation reduces the certainty of the final estimate (in monetary units) as compared to an impact estimate on its own (in its original units). That is a topic that I discussed at the CES conference, and will again at the conferences of the European Evaluation Society, Social Impact Analysts Association, and the American Evaluation Association .

There is more to this than I can hope to address here. In brief—the credibility of a valuation can never be greater than the credibility of the impact estimate upon which it is based. Call that Gargani’s Law.

If ensuring the feasibility of an evaluation results in impact estimates with low credibility (see above), we should think carefully before reducing credibility further by expressing the impact in monetary units.

Where do we go from here?

The European standard sets out to solve a problem that is intrinsic to our profession–stakeholders with different perspectives are constantly struggling to come to agreement about what makes an evaluation good enough for the purposes they have in mind. In the case of the new standard, I fear the bar may be set too low, tipping the balance in favor of feasibility over credibility.

That is, of course, speculation. But so too is believing the balance is right or that it is tipped in the other direction. What is needed is a program of research—research on evaluation—that helps us understand whether the tradeoffs we make bear the fruit we expect.

The lack of research on evaluation is a weak link in the chain of reasoning that makes our work matter in Europe, the US, and around the world. My colleagues and I are hoping to strengthen that link a little, but we need others to join us. I hope you will.

Advertisements

4 Comments

Filed under AEA Conference, Conference Blog, Evaluation, Evaluation Quality, Program Evaluation, Research

The Future of Evaluation: 10 Predictions

Before January comes to a close, I thought I would make a few predictions.  Ten to be exact.  That’s what blogs do in the new year, after all.

Rather than make predictions about what will happen this year—in which case I would surely be caught out—I make predictions about what will happen over the next ten years.  It’s safer that way, and more fun as I can set my imagination free.

My predictions are not based on my ideal future.  I believe that some of my predictions, if they came to pass, would present serious challenges to the field (and to me).  Rather, I take trends that I have noticed and push them out to their logical—perhaps extreme—conclusions.

In the next ten years…

(1) Most evaluations will be internal.

The growth of internal evaluation, especially in corporations adopting environmental and social missions, will continue.  Eventually, internal evaluation will overshadow external evaluation.  The job responsibilities of internal evaluators will expand and routinely include organizational development, strategic planning, and program design.  Advances in online data collection and real-time reporting will increase the transparency of internal evaluation, reducing the utility of external consultants.

(2) Evaluation reports will become obsolete.

After-the-fact reports will disappear entirely.  Results will be generated and shared automatically—in real time—with links to the raw data and documentation explaining methods, samples, and other technical matters.  A new class of predictive reports, preports, will emerge.  Preports will suggest specific adjustments to program operations that anticipate demographic shifts, economic shocks, and social trends.

(3) Evaluations will abandon data collection in favor of data mining.

Tremendous amounts of data are being collected in our day-to-day lives and stored digitally.  It will become routine for evaluators to access and integrate these data.  Standards will be established specifying the type, format, security, and quality of “core data” that are routinely collected from existing sources.  As in medicine, core data will represent most of the outcome and process measures that are used in evaluations.

(4) A national registry of evaluations will be created.

Evaluators will begin to record their studies in a central, open-access registry as a requirement of funding.  The registry will document research questions, methods, contextual factors, and intended purposes prior to the start of an evaluation.  Results will be entered or linked at the end of the evaluation.  The stated purpose of the database will be to improve evaluation synthesis, meta-analysis, meta-evaluation, policy planning, and local program design.  It will be the subject of prolonged debate.

(5) Evaluations will be conducted in more open ways.

Evaluations will no longer be conducted in silos.  Evaluations will be public activities that are discussed and debated before, during, and after they are conducted.  Social media, wikis, and websites will be re-imagined as virtual evaluation research centers in which like-minded stakeholders collaborate informally across organizations, geographies, and socioeconomic strata.

(6) The RFP will RIP.

The purpose of an RFP is to help someone choose the best service at the lowest price.  RFPs will no longer serve this purpose well because most evaluations will be internal (see 1 above), information about how evaluators conduct their work will be widely available (see 5 above), and relevant data will be immediately accessible (see 3 above).  Internal evaluators will simply drop their data—quantitative and qualitative—into competing analysis and reporting apps, and then choose the ones that best meet their needs.

(7) Evaluation theories (plural) will disappear.

Over the past 20 years, there has been a proliferation of theories intended to guide evaluation practice.  Over the next ten years, there will be a convergence of theories until one comprehensive, contingent, context-sensitive theory emerges.  All evaluators—quantitative and qualitative; process-oriented and outcome-oriented; empowerment and traditional—will be able to use the theory in ways that guide and improve their practice.

(8) The demand for evaluators will continue to grow.

The demand for evaluators has been growing steadily over the past 20 to 30 years.  Over the next ten years, the demand will not level off due to the growth of internal evaluation (see 1 above) and the availability of data (see 3 above).

(9) The number of training programs in evaluation will increase.

There is a shortage of evaluation training programs in colleges and universities.  The shortage is driven largely by how colleges and universities are organized around disciplines.  Evaluation is typically found as a specialty within many disciplines in the same institution.  That disciplinary structure will soften and the number of evaluation-specific centers and training programs in academia will grow.

(10) The term evaluation will go out of favor.

The term evaluation sets the process of understanding a program apart from the process of managing a program.  Good evaluators have always worked to improve understanding and management.  When they do, they have sometimes been criticized for doing more than determining the merit of a program.  To more accurately describe what good evaluators do, evaluation will become known by a new name, such as social impact management.

…all we have to do now is wait ten years and see if I am right.

41 Comments

Filed under Design, Evaluation, Program Design, Program Evaluation

What the Hell is Quality?

In Zen and the Art of Motorcycle Maintenance, an exasperated Robert Pirsig famously asked, “What the hell is quality?” and expended a great deal of energy trying  to work out an answer.  As I find myself considering the meaning of quality evaluation, the theme of the upcoming 2010 Conference of the American Evaluation Association, it feels like déjà vu all over again.  There are countless definitions of quality floating about (for a short list see Garvin, (1984)), but arguably few if any examples of the concept being applied to modern evaluation practice.  So what the hell is quality evaluation?  And will I need to work out an answer for myself?

Luckily there is some agreement out there.  Quality is usually thought of as an amalgam of multiple criteria, and quality is judged by comparing the characteristics of an actual product or service to those criteria.

Isn’t this exactly what evaluators are trained to do?

Yes.  And judging quality in this way poses some practical problems that will be familiar to evaluators:

Who devises the criteria?
Evaluations serve many often competing interests.  Funders, clients, direct stakeholders, and professional peers make the short list.  All have something to say about what makes an evaluation high quality, but they do not have equal clout.  Some are influential because they have market power (they pay for evaluation services).  Others are influential because they have standing in the profession (they are considered experts or thought leaders).  And as the table below illustrates, some are influential because they have both (funders) and others lack influence because they have neither (direct stakeholders).  More on this in a future blog.

Who makes the comparison?
Quality criteria may be devised by one group and then used by another to judge quality.  For example, funders may establish criteria and then hire independent evaluators (professional peers) who use the criteria to judge the quality of evaluations.  This is what happens when evaluation proposals are reviewed and ongoing evaluations are monitored.  More on this in a future blog.

How is the comparison made?
Comparisons can be made in any number of ways, but (imperfectly) we can lump them into two approaches—the explicit, cerebral, and systemic approach, and the implicit, intuitive, and inconsistent approach.  Individuals tend to judge quality in the latter fashion.  It is not a bad way to go about things, especially when considering everyday purchases (a pair of sneakers or a tuna fish sandwich).  When considering evaluation, however, it would seem best to judge quality in the former fashion.  But is it?  More on this in a future blog.

So what the hell is quality?  This is where I propose an answer that I hope is simple yet covers most of the relevant issues facing our profession.  Quality evaluation is comprised of three distinct things—all important separately, but only in combination reflecting quality.  They are:

Standards
When the criteria used to judge quality come from those with professional standing, the criteria describe an evaluation that meets professional standards.  Standards focus on technical and nontechnical attributes of an evaluation that are under the direct control of the evaluator.  Perhaps the two best examples of this are the Program Evaluation Standards and the Program Evaluations Metaevaluation Checklist.

Satisfaction
When the criteria used to judge quality come from those with market power, the criteria describe an evaluation that would satisfy paying customers.  Satisfaction focuses on whether expectations—reasonable or unreasonable, documented in a contract or not—are met by the evaluator.  Collectively, these expectations define the demand for evaluation in the marketplace.

Empowerment
When the criteria used to judge quality come from direct stakeholders with neither professional standing nor market power, the criteria change the power dynamic of the evaluation.  Empowerment evaluation and participatory evaluation are perhaps the two best examples of evaluation approaches that look to those served by programs to help define a quality evaluation.

Standards, satisfaction, and empowerment are related, but they are not interchangeable.  One can be dissatisfied with an evaluation that exceeds professional standards, or empowered by an evaluation with which funders were not satisfied.  I will argue that the quality of an evaluation should be measured against all three sets of criteria.  Is that feasible?  Desirable?  That is what I will hash out over the next few weeks. 

5 Comments

Filed under Evaluation, Evaluation Quality